

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ASSESSING THE EFFECT OF HONEYPOTS
ON CYBER-ATTACKERS

by

Sze Li Harry Lim

December 2006

 Thesis Advisor: Neil C. Rowe
 Second Reader: John D. Fulp

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Assessing the Effects of Honeypots on Cyber-
Attackers
6. AUTHOR(S) Sze Li Harry Lim

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A honeypot is a non-production system, design to interact with cyber-attackers to collect intelligence on attack
techniques and behaviors. While the security community is reaping fruits of this collection tool, the hacker community is
increasingly aware of this technology. In response, they develop anti-honeypot technology to detect and avoid honeypots.
Prior to the discovery of newer intelligence collection tools, we need to maintain the relevancy of honeypot. Since the
development of anti-honeypot technology indicates the deterrent effect of honeypot, we can capitalize on this deterrent effect to
develop fake honeypot. Fake honeypot is real production system with deterring characteristics of honeypot that induces the
avoidance behavior of cyber-attackers. Fake honeypots will provide operators with workable production systems under
obfuscation of deterring honeypot when deployed in hostile information environment. Deployed in a midst of real honeynets, it
will confuse and delay cyber-attackers. To understand the effects of honeypot on cyber-attackers to design fake honeypot, we
exposed a tightly secured, self-contained virtual honeypot to the Internet over a period of 28 days. We conclude that it is able
to withstand the duration of exposure without compromise. The metrics pertaining to the size of last packet suggested
departure of cyber-attackers during reconnaissance.

15. NUMBER OF
PAGES

79

14. SUBJECT TERMS Fake Honeypots, Deception, Delay, Deterrence

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

ASSESSING THE EFFECTS OF HONEYPOTS ON CYBER-ATTACKERS

Sze Li Harry Lim
Major, Singapore Army

B.Eng., National University of Singapore, 1998
M.Sc., National University of Singapore, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Author: Sze Li Harry, Lim

Approved by: Neil C. Rowe, Ph.D.

Thesis Advisor

John D. Fulp
Second Reader

Approved by: Peter J. Denning, Ph.D

Chairman, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

A honeypot is a non-production system, design to interact with cyber-attackers to

collect intelligence on attack techniques and behaviors. While the security community is

reaping fruits of this collection tool, the hacker community is increasingly aware of this

technology. In response, they develop anti-honeypot technology to detect and avoid

honeypots. Prior to the discovery of newer intelligence collection tools, we need to

maintain the relevancy of honeypot. Since the development of anti-honeypot technology

indicates the deterrent effect of honeypot, we can capitalize on this deterrent effect to

develop fake honeypot. Fake honeypot is real production system with deterring

characteristics of honeypot that induces the avoidance behavior of cyber-attackers. Fake

honeypots will provide operators with workable production systems under obfuscation of

deterring honeypot when deployed in hostile information environment. Deployed in a

midst of real honeynets, it will confuse and delay cyber-attackers. To understand the

effects of honeypot on cyber-attackers to design fake honeypot, we exposed a tightly

secured, self-contained virtual honeypot to the Internet over a period of 28 days. We

conclude that it is able to withstand the duration of exposure without compromise. The

metrics pertaining to the size of last packet suggested departure of cyber-attackers during

reconnaissance.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..3
A. OBSERVATION, ORIENTATION, DECISION AND ACTION

(OODA) LOOP...3
B. THREAT MODELING IN COMPUTER SECURITY3
C. HONEYPOTS (THE HONEYNET PROJECT, 2004).................................4

1. Know Your Enemy ..4
2. Definition of Honeypot ..5
3. Variations of Honeypots ..5
4. Uses of Honeypots ..5
5. Honeynets..5
6. Virtual Honeynets ..6

D. ANTI-HONEYPOT TECHNOLOGY ...6
E. FAKE HONEYNETS ..7
F. INTRUSION PREVENTION SYSTEM..7
G. SYSTEM INTEGRITY ...8
H. DATA COLLECTION AND ANALYSIS ...8

III. PROBLEM DEFINITION AND ASSUMPTIONS...11
A. PROBLEM DEFINITION ..11
B. ASSUMPTIONS...11

1. Threat Model..11
a. Ignorant Cyber-Attackers ...11
b. Honeypot-Aware Cyber-Attackers..12
c. Advanced Cyber-Attackers..12

C. GOAL..12

IV. EXPERIMENTAL SETUP...13
A. EXPERIMENT SPECIFICATION..13

1. Hardware Specification...13
2. Software Specification ...15

B. DESIGN OF THE EXPERIMENT ..18

V. ANALYSIS OF RESULTS..21
A. SECURITY OF FAKE HONEYNET ..21
B. TRAFFIC VOLUME OF HONEYNET ..21
C. BELIEVABILTY OF FAKE HONEYNET...23
D. SESSION ANALYSIS ...24
E. TIME DOMAIN ANALYSIS..27
F. PACKET SIZE ANALYSIS ...29
G. LAST PACKET RECEIVED ANALYSIS ..31

VI. CONCLUSIONS ..41
A. CONCLUSIONS ..41
B. APPLICATIONS ...42

viii

C. FUTURE WORKS...42

APPENDIX A. RESULT PLOTS..45
A. RESULTS FROM SESSION ANALYSIS...45
B. RESULTS FROM TIME DOMAIN ANALYSIS49

APPENDIX B. SOURCE CODES...53

LIST OF REFERENCES..61

INITIAL DISTRIBUTION LIST ...63

ix

LIST OF FIGURES

Figure 1. High-level Process of Threat Modeling...4
Figure 2. Hardware Setup..15
Figure 3. Fake Honeynet Setup. ..16
Figure 4. Algorithm of tcpdumpAnalysisConnectionLastPacket class...........................19
Figure 5. Algorithm of tcpdumpAnalysisConnectionSocketPairSizeCountTime class..20
Figure 6. Plot of TCP Session Count for Fake Honeypot Across Weeks.22
Figure 7. Plot of TCP Session Counts Across Weeks...24
Figure 8. Plot of Ratio of Received to Sent Bytes for Windows Server (Week 2).25
Figure 9. Plot of Ratio of Received to Sent Bytes for Windows Server (Week 3).26
Figure 10. Plot of Ratio of Received to Sent Bytes for Windows Server (Week 4).26
Figure 11. Plot of Ratio of Actual to Estimated Size against Time for Linux Host

Operating System (Week 2)...28
Figure 12. Plot of Ratio of Actual to Estimated Size against Time for Windows 2000

Advanced Server Operating System (Week 3). ...29
Figure 13. Histogram of Size of Packets Received by Fake Honeynet (Week 2).............30
Figure 14. Histogram of Size of Packets Received by Fake Honeynet (Week 3).............30
Figure 15. Histogram of Size of Packets Received by Fake Honeynet (Week 4).............31
Figure 16. Histogram of Size of Last Received Packet by Fake Honeynet (Week 2).32
Figure 17. Histogram of Size of Last Received Packet by Fake Honeynets (Week 3).....33
Figure 18. Histogram of Size of Last Received Packet by Fake Honeynets (Week 4).....33
Figure 19. Screen Capture of Packet Inspection for Packet from IP Address

210.51.23.237 (Packet Size = 501). ...38
Figure 20. Screen Capture of Packet Inspection for Packet from IP Address

194.145.63.131 (Packet Size = 922). ...39
Figure 21. Frequency Plot of Malicious Packet Sizes...40
Figure 22. Plot of Ratio of Received to Sent Bytes for Host Linux (Week 2).................45
Figure 23. Plot of Ratio of Received to Sent Bytes for Windows XP (Week 2).46
Figure 24. Plot of Ratio of Received to Sent Bytes for Linux (Week 3).46
Figure 25. Plot of Ratio of Received to Sent Bytes for Windows XP (Week 3).47
Figure 26. Plot of Ratio of Received to Sent Bytes for Linux (Week 4).47
Figure 27. Plot of Ratio of Received to Sent Bytes for Windows XP (Week 4).48
Figure 28. Plot of Ratio of Actual to Estimated Size against Time for Windows 2000

Advanced Server Operating System (Week 2). ...49
Figure 29. Plot of Ratio of Actual to Estimated Size against Time for Linux Host

Operating System (Week 3)...49
Figure 30. Plot of Ratio of Actual to Estimated Size against Time for Windows XP

Operating System (Week 3)...50
Figure 31. Plot of Ratio of Actual to Estimated Size against Time for Linux Host

Operating System (Week 4)...50
Figure 32. Plot of Ratio of Actual to Estimated Size against Time for Windows 2000

Advanced Server Operating System (Week 4). ...51
Figure 33. Plot of Ratio of Actual to Estimated Size against Time for Windows XP

Operating System (Week 4)...51

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. Detecting Anti-Honeypot/Honeynet Technology. ...7
Table 2. Experimental Hardware Specification. ..14
Table 3. Experiment Software Specification. ..17
Table 4. Field Values of Packets Obtained from Wireshark..18
Table 5. Percentage of Traffic with Packet Size Between 50 and 100 Bytes.32
Table 6. Distribution of Protocol and Flags for Last Packets (Week 2).34
Table 7. Distribution of Protocol and Flags for Last Packets (Week 3).35
Table 8. Distribution of Protocol and Flags for Last Packets (Week 4).36
Table 9. Organization Name and Location of Source IP Addresses for Week 4...........38

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I wish express my gratitude to my thesis advisor, Professor Neil C. Rowe for

stimulating my interest in honeypots and JD Fulp for my inaugural lesson in network

security.

I appreciate Han Chong, Goh, my fellow “bee” in the honeynet research for the

bringing me on deck for this thesis. In addition, I will like to thank Yu Loon, Ng, and

Chin Chin, Ng for their timely morale boosting discussion and support.

Lastly, I will like extend my appreciation to my wife, Doris, for her unwavering

love and patience, in my absence to complete this thesis.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

All warfares are based on deception. Hence, when able to attack, we must
seem unable; when using our forces, we must seem inactive; when we are
near, we must make the enemy believe we are far away; when far away,
we must make him believe we are near. Hold out baits to entice the
enemy. Feign disorder, and crush him. –

 Sun Tzu, the Art of War

The advent of Information Technology (IT) has revolutionized the conduct of

commerce, education, socio-politics and military operations. While the technology has

been assimilated into our daily lives to increase our competence, capacity and

convenience, it has obscured the operational details of these processes. This lack of

detailed information offers cyber-attackers an opportunity for exploitations. Information

on these exploits is usually restricted to the hacker communities, hence it poses a great

challenge for the security community to understand and defend their systems.

The “Honeynet Project” started June 2000 with the mandate to collect intelligence

on exploitations and raise awareness of cyber-threats and vulnerabilities. They use and

provide tools and techniques, predominantly in the form of honeypots, in their research.

Honeypots are systems that are not intended for any production or authorized activity.

Hence, any activities, other than those generated by the administrators of the honeypots,

are deemed unauthorized or illicit. This value of honeypots lies in the collection of these

activities (The Honeynet Project, 2004). Honeynets extend the concept of honeypots to

create networks of honeypots, thereby increasing the value that we can derive beyond

individual honeypot. However, cyber-attackers soon gain awareness of such intelligence

collection tools. This suggests that honeypots could be detected by cyber-attackers,

which could reduce the value of honeypots. (Rowe, 2006) suggested to capitalize on the

intent of cyber-attackers to avoid honeypots; the concept of fake honeypots was proposed

as a defensive technique to deter and delay cyber-attackers.

The objective of this thesis is to learn more through experiments about the

decision cycle of cyber-attackers. The goal is to provide appropriate countermeasures by

breaking the attackers’ decision cycle. We aim to establish the noticeable features of

2

honeypots from the cyber-attackers’ perspective. Capitalizing on the deterrence effect of

honeypots, we can design fake honeypots to deter and delay exploitations. Fake

honeypots behave like honeypots from the cyber-attackers perspective. They, however,

can be production systems and do not need to record exploitation techniques. Due to the

fear of detection by the honeypot administrator, coupled with the assumed lack of

usefulness of honeypots for normal cyber-attackers, fake honeypots deter cyber-attackers

from further reconnaissance and exploitation. A random population of fake honeypots

amidst real honeypots in enterprise networks could create uncertainties to confuse and

delay the decision of cyber-attackers upon detection of potential honeypots.

The setup of our experiments includes the installation and configuration of a

honeypot. We collected and compared results from existing real honeypots and fake

honeypots. We analyzed the data to identify evidence of deterrence or “fear” of cyber-

attackers. Based on this evidence, we discuss the usefulness of fake honeypots for

information-security defense.

The key concepts of the thesis such as honeypots along with the survey of related

works, are given in Chapter II. Chapter III gives the problem statement, assumptions and

intent. Chapter IV details the test bed setup, configuration, and rationale of the honeypot

including hardware, software and network details. Data analysis is given in Chapter IV.

Chapter V provides conclusions and suggestions for application. Appendix A includes

other results generated from the honeynet. Appendix B includes the source code for the

two Java classes.

3

II. BACKGROUND

This chapter provides background related to our study. The first and second

sections provide a process for modeling threats and decision cycles. The third to fifth

sections provide the history and overview of honeypots and anti-honeypot/anti-honeynet

technology. The sixth section highlight the difference in intrusion detection and

prevention systems and their relevancy in the honeypot implementation. The seventh

section examines the importance of system integrity in implementation of a honeypot.

The last section elaborates on data collection techniques and their associated tools.

A. OBSERVATION, ORIENTATION, DECISION AND ACTION (OODA)

LOOP
The key to military victory is to create situations wherein one can make

appropriate decisions and translate these decisions into executions more quickly than the

adversaries. (Boyd, 1976) hypothesized that all intelligent organisms undergo a

continuous cycle of interaction with their environment. Boyd breaks this cycle down to

four inter-related and overlapping continuous processes, namely observation (collection

of data), orientation (analysis and synthesis of data to form current mental perspective),

decision (determination of a course of action based on current mental perspective) and

action (physical execution of decisions). This decision cycle is known as the OODA

loop.

Analysis of cyber-attacks reveals that the same decision cycle is involved.

Penetration and understanding of the cyber-attackers’ OODA cycle provides us with a

framework to devise an effective security plan.

B. THREAT MODELING IN COMPUTER SECURITY
To devise a cost-effective security plan, we must understand our threat vis-à-vis

the value of assets to be protected. Understanding the adversary’s view of the system is a

critical step in threat modeling process. (Swiderski, 2004) suggested a threat modeling

process as shown in Figure 1, which we will follow here.

4

Entry Points

Assets

Trust Levels

Use
Scenarios

Assumptions
and

Dependencies

Model
the System

Identify
Threats

Analyze Threats/
Determine

Vulnerabilities

Understanding the
Adversary’s View

Characterize the
Security of
the System

Determine
Threats

Figure 1. High-level Process of Threat Modeling.

C. HONEYPOTS (THE HONEYNET PROJECT, 2004)

If you know the enemy and know yourself, you need not fear the result of
a hundred battles. If you know yourself but not the enemy, for every
victory gained you will also suffer a defeat. If you know neither the enemy
nor yourself, you will succumb in every battle.

 - Sun Tzu, the Art of War

1. Know Your Enemy
The concept of warfare in cyberspace is similar to that of conventional warfare.

Understanding our capabilities and vulnerabilities, vis-à-vis that of the adversaries,

allows us to devise defensive and offensive plans. Prior to October 1999, there was very

little information about cyber-attacker threats, motives, and techniques. The Honeynet

Project was officially incorporated in July 2001 as a nonprofit organization to collect and

analyze cyber-attack intelligence to support awareness. Since unique exploit motives and

techniques are known only to cyber-attacker communities, and otherwise often not

widely known, the Honeynet Project has to devise and employ creative attack-data

collection tools like honeypots and honeynets.

5

2. Definition of Honeypot
“A honeypot is an information system resource whose value lies in unauthorized

or illicit use of that resource (The Honeynet Project, 2004).” A honeypot is not

designated as a production-oriented component of an information infrastructure. As

such, nobody should be using or interacting with honeypots; any transactions or

interactions with a honeypot are by definition unauthorized.

3. Variations of Honeypots
There are two categories of honeypots: low-interaction and high-interaction.

Low-interaction honeypots are passive and cyber-attackers are limited to emulated

services rather than actual operating systems. They are generally easier to deploy and

pose minimal risk to the administrators. Examples are Honeyd, Specter and KFSensor.

High-interaction honeypots provide entire operating systems and applications for

attackers to interact. They are more complex and serve as better intelligence-collection

tools. However, they pose higher level of risk to the administrator due to the potential of

compromise by cyber-attackers, as for instance, with the use of compromised honeypots

to propagate other attacks.

4. Uses of Honeypots
Honeypots can be deployed as production or research systems. When deployed as

production systems, different honeypots can serve to prevent, detect and respond to

attacks. When deployed as research systems, they serve to collect information on threats

for analysis and security enhancement.

5. Honeynets
Similarly to the transition of low-interaction to high interaction honeypots, the

value of honeypots can be further extended by networking. Putting honeypots into

networks provide cyber-attackers a realistic network of systems to interact with, and

permits better analysis of distributed attacks.

6

6. Virtual Honeynets
Virtual honeynets (The Honeynet Project, 2004) use virtual machines like

VMware to emulate multiple systems with different operating systems on a single

hardware. While reducing the hardware requirements for the administrators, the virtual

guest machines offer cyber-attackers the perspective of independent systems in the

networks. It reduces the cost and management for both production and research

purposes. There are, however, disadvantages to deployment of virtual honeynets. The

use of virtual machines is limited to the hardware virtualization software and the host

operating system. The secured management of the host operating system and the

virtualization software has to be thoroughly planned and executed. A compromise to

either software may allow cyber-attackers to seize control of the entire honeynet. It is

easier to fingerprint a virtual honeynet, as opposed to honeynets deployed with real

hardware, by the presence of virtualization software and signatures of the virtual

hardware emulated by the virtualization software. Cyber-attackers may potentially

identify these signatures and avoid these machines, thereby defeating the purpose of

deploying the honeynet.

D. ANTI-HONEYPOT TECHNOLOGY
As the security professionals begin to include honeypots or honeynets into their

arsenal for information defense, cyber-attackers have reacted with anti-honeypot

technology. (Krawetz, 2004) opined that the emergence of these honeypot detection tools

suggested that honeypots were indeed affecting the operations of cyber-attackers. This

technology can probably be extended to address the detection of diverse honeypots.

(Holz and Raynal, 2005) introduced several techniques and tools applicable to cyber-

attackers to detect suspicious environments (e.g., virtual machines and presence of

debuggers). They presented the detection of Sebek by measuring execution time of the

read() system call. Table 1 shows the various implementations of other honeypots and

the associated characteristics and potential exploits.

7

Honeypot/honeynet Typical
Characteristics

Methods for Detecting the Honeypot

BackOfficer Friendly Restricted emulated
services and responses

Send different requests and verify the consistency
of responses for different services.

Honeyd Signature based
responses

Send a mixture of legitimate and illegitimate
traffic/payload, with common signatures
recognized by targeted honeypots.

Symantec Decoy Server
or Virtual Honeynet

Virtualization Detect virtual hardware, for instance Media
Access Control (MAC) addresses.

Snort_inline Modification actions Send different packets and verify the existence
and integrity of response packets.

Virtual Honeynet System files Probe for existence of VMware.

Active Tcpdump
session or Sebek

Logging processes Scan for active logging process or increased
round-trip time (for instance, due to read(1) in
Sebek-based honeypots).

Table 1. Detecting Anti-Honeypot/Honeynet Technology.

E. FAKE HONEYNETS
Capitalizing on the advent of anti-honeypot/honeynet technology, (Rowe, 2006)

suggested the use of fake honeypots to deter and delay cyber-attacks. These are real

production systems with the signatures or behaviors of honeynets to deter cyber-attacks.

The suggested metrics (Rowe, 2006) to guide design of good honeypots may be used by

cyber-attackers to detect and avoid potential honeypots. Using the anti-

honeypot/honeynet technology during reconnaissance, the cyber-attacker may believe a

system with poor metrics score is a honeypot, thus, avoid exploitation of the system.

This defensive approach capitalizes on the dislike of cyber-attackers for honeynets. With

the current computing and memory capacities, a fake honeynet is most easily

implemented on a real machine as a self-contained virtual honeynet.

F. INTRUSION PREVENTION SYSTEM
As part of Defense-in-Depth approach to Information Security, Intrusion

Detection Systems (IDS) are commonly deployed to detect potential incoming threats

based on signature sets or anomalies. However, such systems are passive; they often

overwhelm administrators with alerts instead of timely response to detected attacks.

Intrusion Prevention Systems (IPS) are introduced to address this response capability gap.

8

They extend the detection capability of IDS to include automated controls in response to

cyber-attacks, for instance, to block or modify packets (Rash, Orebaugh, Clark, Pinkard

and Babbin, 2005). This capability, however, comes at a significant price to the

performance of protected networks or systems. Snort is a well-known IDS which will be

relevant for post-collection analysis of Tcpdump data in order to detect cyber-attacks

against honeypots. Snort_inline builds on the detection capability of Snort. It informs

iptables to drop, reject or modify packets in accordance to the rules set. This will be

relevant in future investigations to channel cyber-attackers to the path of choice of

administrators.

G. SYSTEM INTEGRITY
To implement a self-contained virtual honeynet, we must try to ensure that the

host operating system will not be compromised. If it is compromised, we must be able to

isolate the compromise. The typical approach to maintaining system integrity is to

establish baseline system fingerprints, prior to operations that may result in compromise;

for instance, one can connect to Internet and periodically monitor changes to the

computer files against these fingerprints. These fingerprints can be cryptographic hashes

stored offline to prevent compromise. In case of modifications to these files, the

administrator will investigate if the modifications are legitimate and update the offline

system fingerprints database accordingly. There many ways to implement such system

integrity features. Tripwire, Intact, and Veracity are some high-end commercially

available packages. Osiris is an open-source host-integrity monitoring system that keeps

the administrator apprised of possible compromises or changes to the file system, resident

kernel modules, or user and group lists. Alternatively, scripts or programs can be written

to automate the hashing of system files.

H. DATA COLLECTION AND ANALYSIS
(Jones, 2006) categorized the four types of Network-Based Evidence (NBE) for

analysis. These include full session data, session data, alert data, and statistical data. Full

content data consists of the actual packets, typically including the headers and application

information, as seen on the transmission media. This produces complete information but

9

will take significant disk space. Wireshark (or formerly known as Ethereal) is a memory-

intensive application that captures full content data over the network connections, with a

good user-interface for full content data analysis. Tcpdump is a lightweight tool used for

similar collection. With these tools, analysts are usually overwhelmed with too much

information. Richer analysis is normally conducted by examining session data of

particularly interesting sessions with tools like Scanmap3d. However, the challenge is

often to identify the session of interest. Alert data generated by Snort, shoki and Bro

offer intrusion detection alerts through signatures and rules, and these usually represent

much less data than the session data. Statistical data on system parameters are often

useful for performance monitoring. Such monitoring can trigger new alerts that may not

be obvious at lower (more detailed) levels. Tcpstat and Tcpdstat are common open-

source statistical tools.

Tcpdump data was the main source of data collected for the project reported here.

While Wireshark provided most common processing tools required for the analysis of the

Tcpdump data, the processed data did not fit perfectly into our analysis requirement. As

such, simple programs had to be developed to extract and cluster the data.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. PROBLEM DEFINITION AND ASSUMPTIONS

A. PROBLEM DEFINITION
Without constant innovation and improvement in the deployment of honeypots,

their effectiveness will decrease with the increasing awareness of the cyber-attackers.

Signatures to detect honeypots could be available to enable cyber-attackers to avoid

honeypots much as they are for permitting defenders to recognize attacks. Till the advent

of newer cyber-attack intelligence collection tools, we need to maintain the effectiveness

and relevancy of honeypots. While cyber-attackers have devise mechanisms to evade our

detection and protection system, we can, likewise, deploy real and fake honeynets to

create confusion and obfuscation evade their reconnaissance and attacks.

Honeypots have been deployed to prevent, detect and respond to attacks,

however, they are usually restricted to conventional passive deployment at enterprise

level. The deployment of an active self-contained virtual honeynet as a preventive

security measure for the individual host terminal, rather than as a data collection tool, has

not been tested. This thesis explores the use of a self-contained virtual honeynet as part

of defense-in-depth mechanisms for a rapid response deployment scenario where

operators are constrained by the small logistics footprint.

B. ASSUMPTIONS

1. Threat Model
For purpose of this thesis, we categorize cyber-attackers into the following

groups.

a. Ignorant Cyber-Attackers

These cyber-attackers are assumed to be ignorant of the existence of

honeypot technology and do not understand its nature. They consist of “script kiddies” or

novice amateurs with little experiences in offensive information operations. Their wares

are often downloaded from the Internet or distributed by fellow cyber-attackers. They are

motivated by thrill, challenge, pleasure, recognition and occasionally profit (in terms of

“owning” machines as bots). Most of them can be prevented by standard good security

management of systems.

12

b. Honeypot-Aware Cyber-Attackers
These are aware of honeypot technology and use a combination of

automated hacking tools, armed with signatures of potential honeypots, and manual

attack techniques. They may be experienced in offensive information operations. They

use risk assessment and are cautious in their navigations and attacks. Generally they will

be “scared” off by the existence of honeypots since there are so many easier targets.

They may be motivated by knowledge and mission requirements. This is the ideal group

target for fake honeypots.

c. Advanced Cyber-Attackers
These have detailed knowledge of honeypots. They are usually goal-

specific in nature, able to stealthily probe potential honeypots to distinguish real and fake

ones. Fake honeypots are not designed to deceive this group. However, when deployed

amidst real honeypots, it is expected that fakes will obscure the real ones, hence slowing

the decision cycle of these cyber-attackers. In addition, it may create frustration for these

cyber-attackers, leading to emotional, rather than logical, reactions (Rowe, 2006).

C. GOAL
The goal of this thesis is to establish the existence of different behavior of cyber-

attackers towards the honeypots. Subsequently these reactions can be exploited in fake

honeypots to deter honeypot-aware cyber-attackers. We will also explore the feasibility

of using honeypots to delay advanced cyber-attackers through obfuscation and confusion.

13

IV. EXPERIMENTAL SETUP

This chapter details the hardware, software, and layout of the honeynet used in

experiments. We report the problems encountered in setting up the experiment. We also

discuss the motivation behind the Java program to analyze Tcpdump data.

A. EXPERIMENT SPECIFICATION

1. Hardware Specification
The hardware setup prepared by (Duong, 2006) in her M.S. thesis was maintained

as a control setup of a real honeynet. It consisted of three computers, namely the Router,

Honeynet and Data Capture machine. In addition, a Dell Inspiron Laptop was set up with

a self-contained virtual honeynet to serve as the fake honeynet. Instead of a full-fledged

router machine, a Belkin Router was used to perform create the network address

translation (NAT). Table 2 and Figure 2 lists and illustrates the specification,,

respectively.

14

Router (Dell Dimension XPS B933)
Processor Intel Pentium III – 933MHz
Storage Maxtor (Ultra ATA) – 20GB
Memory 512MB
NIC Davicom Semiconductor 21x4x DEC Tulip – Compatible

10/100Mbps
3Com 3C905C – TX Fast Etherlink 10/100Mbps
3Com 3C905C – TX Fast Etherlink 10/100Mbps

Drives DVD-ROM, CD-RW, Zip, Floppy

Honeynet (Dell Optiplex GX520)
Processor Intel Pentium 4 -2.80GHz
Storage (Serial ATA) – 40GB
Memory 1024 MB
NIC DELL NetXtreme BCM5751 Gigabit Ethernet PCI Express

(integrated)
Drives CD-RW, Floppy

Data Capture (Gateway)
Processor Intel Pentium 4 – 1.80GHz
Storage Western Digital (Ultra ATA) – 40GB
Memory 256 MB
NIC EthernExpress Pro/100 VE (integrated)
Drives CD-RW, Floppy

Fake Self-contained Honeynet (Dell Inspiron 6000)
Processor Intel Pentium 4 – 1.86GHz
Storage Seagate (Ultra ATA) – 80GB
Memory 1.25 GB
NIC Broadcom 440x 10/100 Integrated Controller

Dell_Wireless WLAN Card
Drives NEC ND-6650A 8x DVD+/-RW
Router Belkin Wireless G Router

Table 2. Experimental Hardware Specification.

15

Internet

` `

Hub

Router

Honeynet Data
Capture

Router

Self-Contained
Honeynet

Real Honeynet Setup Fake Honeynet Setup

Figure 2. Hardware Setup.

2. Software Specification

The software specification from Duong’s honeynet setup was maintained. In

addition, SUSE Linux 10 was installed on the Fake Honeynet machine. The intent was to

replicate the software configuration of the honeynet to provide common basis of

comparison.

In light of the increasing popularity of scanners for VMware as means to detect

honeynets, VMware 5.5 was setup to host a Microsoft Windows XP Professional with

Service Pack 2 and a Microsoft Windows 2000 Advanced Server with Service Pack 4.

Figure 3 shows the fake honeynet setup.

16

Figure 3. Fake Honeynet Setup.

As the two guest operating systems were to simulate honeypots, they were not

fully equipped with all common applications and services. As it would be uncommon for

a user to use machines without common applications like Microsoft Office, this served as

another attempt to fool attackers as to the presence of a honeynet. Lastly, the Snort

intrusion-detection system and Tcpdump packet collector were installed, though only

Tcpdump was running as an active process. Tcpdump was selected due to its lightweight

ability to capture full content data as opposed to other tools. This served to create the

impression of active logging characteristic of honeynet. All software was fully patched

with the latest updates, and the baseline fingerprints for the host Linux machines were

obtained using the Host System Integrity Monitoring System Osiris 4.2.2 prior to

connection to Internet. As opposed to the real honeypot, the integrity of the guest

operating systems (OS) on the fake honeynet, namely the Windows XP Professional and

17

Windows 2000 Advanced Server, is of lesser concern as they are not part of the

production systems. The only concern is that that they may be “owned” or compromised

and used as launch pad for other attacks. This risk can be significantly reduced by

frequent remounting of fresh guest operating system and activation of automatic updates.

The analysis machines were not included in the experiment setup. They were

used to test for network connectivity and perform troubleshooting. Wireshark was

installed on a separate machine to facilitate analysis of full content data.

Router (SUSE Linux 10)
Primary Goal Sniff traffic, send captured data to Data Capture
Software Snort 2.4.3 – intrusion detection system

Tcpdump – packets capture

Honeynet (SUSE Linux 10)
Primary Goal Solicit attacks
Storage Tcpdump – packets capture

VMware Workstation 5.5 hosting
 Windows 2000 Advanced Server with SP4
 Windows XP Professional with SP2

Data Capture (SUSE Linux 10)

Primary Goal Store Snort Data
Storage PostgreSQL 8.1.1

Fake Self-contained Honeynet (SUSE Linux 10)
Primary Goal Solicit/Deter attacks
Storage Osiris/Unix integrity checker

Tcpdump – packets capture
VMware Workstation 5.5 hosting
 Windows 2000 Advanced Server with SP4
 Windows XP Professional with SP2

Table 3. Experiment Software Specification.

18

B. DESIGN OF THE EXPERIMENT
Full-content Tcpdump data was collected at the Ethernet interface over a period of

28 days for the fake honeynet. The Pcap dump file was collected on a weekly basis for

analysis. Similar data was conducted for the real honeynet over a period of 21 days.

Wireshark was used to process the Pcap file into readable text. We were, in

particular, interested in the TCP sessions. They can be obtained using the

Statistics|Sessions commands. To facilitate subsequent analyses, the name resolution box

was unchecked to allow the unresolved addresses to be displayed instead of default

resolved addresses.

In addition to the session information, we would like to find similar information

between a pair of Internet Protocol (IP) addresses. We termed this as IP connection. The

last packet of interest, however, -- a particular interest of ours -- was not offered by

standard built-in utility of Wireshark. Selected displayed fields from Wireshark were

captured for further analysis. They included:

Field Packet Description

Serial Number Serial number of the packet

Time Time elapsed since issuance of a collection command.

SrcIP Source Internet Protocol address

SrcPort Source port

DestIP Destination Internet Protocol address

DestPort Destination port

Size Size of packet in bytes

Table 4. Field Values of Packets Obtained from Wireshark.

Two simple Java classes were developed to digest these exported files. The first

“tcpdumpAnalysisConnectionLastPacket” read the exported files from Wireshark,

19

filtered the last packet of each connection between two machines (based on their IP

addresses), and generated an output file containing the meta-data of the last packet of

each connection. The second “tcpdumpAnalysisConnectionSocketPairSizeCountTime”

class read the IP address of interest and the exported files from Wireshark, and generated

the cumulative size and count of each socket-pair across time. It provided an output file

containing the meta-data of the last packet of socket pair of interest. The procedure

followed by these programs is illustrated in Figures 4 and 5.

Wireshark Export

Fit into designated
format? No

Read line from
input file

Yes

Populate Working
Array

Declare Working
and Storage Array

Tokenize each line

File is not empty Yes

No

Existing IP
Address Pair?

Yes

No

Update Storage
Array

Lock the Working
Array entry with

update =1

Create new entry
into Storage Array

Increment Storage
Array Counter

Working Array to
Storage Array cross-load

is complete?
Yes

No

Unlock the Working
Array entry with

update = 0

Print Storage Array to
Output File

Input Reader Last Packet Filtering Engine Output Generator

Figure 4. Algorithm of tcpdumpAnalysisConnectionLastPacket class.

20

Wireshark Export

Fit into designated
format? No

Read line from
input file

Yes

Populate Working
Array

Declare Working
and Storage Array

Tokenize each line

File is not empty Yes

No

Existing IP
Socket Pair?

Yes

No

Update
sumSizeCurrent

and
connectionCount in

Storage Array

Lock the Working
Array entry with

update =true

Create new
sumSizeCurrent

and
connectionCount
in Storage Array

Increment Storage
Array Counter

Working Array to
Storage Array cross-load

is complete?
Yes

No

Unlock the Working
Array entry with
update = false

Print Storage Array to
Output File

Input Reader Socket Pair Filtering Engine Output Generator

Read IP address
from system

Match IP address
from system?

Update common
fields of Storage

Array

Figure 5. Algorithm of tcpdumpAnalysisConnectionSocketPairSizeCountTime class

21

V. ANALYSIS OF RESULTS

This chapter details the analysis of results of the collection of the Tcpdump data.

It highlights network traffic trends observed which may be useful for future investigation.

A. SECURITY OF FAKE HONEYNET

One goal of this investigation was to determine the effectiveness of the fake

honeynet to deter or confuse the cyber-attackers. The intent was not to employ it as the

core security mechanism but as part of a comprehensive suite of secured management for

information systems to achieve defense-in-depth. Using standard practices for secured

management of information systems, the fake honeynet was patched and tightened. The

initial system fingerprints were generated using an MD5sum script and Osiris was

installed to manage the system integrity. The guest and host operating systems interfaced

with the Internet behind a Belkin router that provided NAT. Standard application

firewalls were, in addition, maintained to prevent hostile traffic from reaching the host

operating system. We ran the collected Tcpdump data through Snort 2.4.5 and received

no alerts that suggested successful break-in to host and guest operating system. All

alerts received are of Priority 3 (low priority). In addition, our scanning of our network-

based evidence showed no break-in behavior, as for instance the installation of rootkits.

Along with the results of our system integrity check, we can assert with some confidence

that the host operating system was not compromised in the 28 days of exposure.

B. TRAFFIC VOLUME OF HONEYNET
Due to the limitations of our experimental design, the good state of security of the

host operating system offered limited insights into the decision cycle of the cyber-

attackers. Figure 6 shows the number of TCP sessions for the fake and real honeynets.

22

TCP Conversation for Fake Honeynet

0

100

200

300

400

500

600

700

800

Week 1 110206-110806 Week 2 110906-111506 Week 3 111606-112206 Week 4 112306-112906

Week

C
on

ve
rs

at
io

n
C

ou
nt

Figure 6. Plot of TCP Session Count for Fake Honeypot Across Weeks.

The traffic on the fake honeynet was significantly lower than traffic of the real

honeynet. For the first week, the fake honeynet was set up at home with the Internet

Service Provider (ISP) of Comcast. We attributed this to the inaccessibility of the IP

address. In the second week, we shifted the fake honeynet to the same subnet of the real

honeynet and TCP traffic volume increased significantly. The IP address of the real

honeynet had been available to hackers for almost a year and had been disseminated

online. As such, its subnet could be deemed a hot zone for TCP traffic.

In the third week, we experimented with the advertisement of both the real and

fake honeynets in Web logs (blogs) and hackers’ discussion forum. The effect of

advertisement was a 6-fold increase in TCP traffic. In addition, we received information,

from the hackers’ discussion forum, pertaining to our system configurations and our

physical address. There were comments that our fake honeynet was so tightly maintained

that it was difficult for an amateur hacker to break into our system. This further

supported our assertion on the security of the fake honeynet. In the fourth week we

observed a 50% drop in our TCP traffic, possibly due to the loss of interest in the

honeynet. The results of their reconnaissance might have suggested that they were not

adequately equipped with tools for further reconnaissance or exploitation. In addition,

23

the fourth week coincided with the Thanksgiving weekend, which may have affected the

American hackers, though the wide distribution of attack times suggested that we were

also getting attacks from all over the world. Either explanation supports the hypothesis

that most cyber-attackers that were visiting our honeynet were amateur. While

professional awareness of anti-honeypot technology began in 2003, it appeared that the

amateurs visiting our honeynet still lacked awareness or tools pertaining to anti-honeypot

technology. So it appeared that the fear or deterrent effect could not be observed with the

existing amateur cyber-attackers.

C. BELIEVABILTY OF FAKE HONEYNET

To deceive, we needed to establish believability of a honeynet from the

perspective of the cyber-attackers. We attempted to duplicate the setup of the real

honeynet within the constraints. The lightweight self-contained constraint helped

deployability while maintaining a high level of interaction. The fully functional guest

and host operating systems were connected to the Internet through a bridged

configuration, where the VMware emulated multiple virtual network interfaces with the

single physical network interface of the host system. The Belkin router G was used to

provide Dynamic Host Configuration Protocol (DHCP) services and assigned each

operating system a unique IP address. This would be a typical network configuration for

home or office, especially with the increasing popularity of wireless home or office

networks. From the perspective of the cyber-attackers, it was difficult to decide if the

downstream machines were physical or virtual machines, let alone real or fake honeypots.

Figure 7 compares the number of TCP sessions for real and fake honeynet. The

figures for each week varied significantly. Reference the discussion above, the variation

was attributed to the established IP address used by the real honeynet. Ignoring week 1,

it was interesting to note that session counts were increasing and decreasing similarly

over the subsequent weeks. Hence we could conclude that the fake honeynet were not

significantly different from the real honeynet from the perspective of the cyber-attackers

over the network.

24

TCP Conversation Count Across Weeks

0

2000

4000

6000

8000

10000

12000

14000

16000

Week 1 110206-110806 Week 2 110906-111506 Week 3 111606-112206 Week 4 112306-112906

Week

C
on

ve
rs

at
io

n
C

ou
nt

Fake Honeynet
Real Honeynet

Figure 7. Plot of TCP Session Counts Across Weeks.

D. SESSION ANALYSIS
The session statistics were generated by Wireshark. The ratio of received to sent

bytes for each honeynet machine was plotted against the session number with sessions

numbered in order of occurrence, with the associated IP address listed for each session.

The plots for Windows 2000 Advanced Server were used for discussion in this chapter,

and the others are in Appendix A.

Figures 8, 9, and 10 show plots for weeks 2, 3, and 4. In week 2 the ratio value

ranged from 0.76 to 12.93. Based on similar observations, we concluded that ratios

above three suggested legitimate sessions between the two machines, for instance, a

download of data from the designated IP port address. Ratio values within the limits of

one to three indicated session support activities like an attempt to set up a session or

request services. Excluding the first data point, Figure 9 illustrates session support

activities where the ratio values vary from 1.68 to 2.93, where the machine was

performing a domain name system (DNS) query to our DNS server. The “recursion

desired” flag was set to one and this resulted in many queries to that IP port address.

Further inspection of the associated raw packets revealed that this behavior was triggered

25

by Windows 2000 Advanced Server in our honeynet with intended destination of

update.microsoft.com. We assumed this to be benign traffic, but a similar traffic profile

involving a different remote site might have been deemed a port scan and triggered alerts.

This suggested the need to be turn off automatic updates when setting up

honeypot/honeynet to remove these alerts, as it might mask other interesting traffic from

cyber-attackers. The administrator, however, can schedule manual updates in a

controlled fashion, in order to maintain the currency of the system. In fact, other than

initial network diagnostics to confirm network connectivity, a honeynet should refrain

from usage like web-browsing and downloading of application or updates, to prevent the

generation of unnecessary traffic. The spike in Figure 10 is the download of updates

from Microsoft Corporation whereas the ensuing traffic could be a suspicious port scan.

Plot of Ratio of Received to Sent Bytes for Windows Server
(Wk2)

0

2

4

6

8

10

12

14

20
9.1

31
.36

.15
8:8

0

20
9.1

31
.36

.15
8:8

0

21
6.1

09
.11

2.1
35

:80

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

31
.63

.58
:80

21
6.2

31
.63

.58
:80

21
6.2

31
.63

.58
:80

21
6.2

31
.63

.58
:80

21
6.2

31
.63

.58
:80

21
6.2

31
.63

.58
:80

21
6.2

39
.37

.10
4:8

0

21
6.2

39
.37

.10
4:8

0

21
6.2

39
.53

.9:
80

21
6.2

39
.53

.9:
80

21
6.2

39
.53

.9:
80

63
.24

5.2
09

.31
:44

3

66
.10

2.7
.14

7:8
0

66
.10

2.7
.14

7:8
0

66
.10

2.7
.99

:80

66
.10

2.7
.99

:80

66
.10

2.7
.99

:80

66
.10

2.7
.99

:80

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

IP:Port Adress

R
at

io

Figure 8. Plot of Ratio of Received to Sent Bytes for Windows Server (Week 2).

26

Plot of Ratio of Received to Sent Bytes for Windows Server
(Wk3)

0

0.5

1

1.5

2

2.5

3

3.5

4

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

21
6.2

28
.2.

12
0:5

3

IP:Port Address

R
at

io

Figure 9. Plot of Ratio of Received to Sent Bytes for Windows Server (Week 3).

Plot of Ratio of Received to Sent Bytes for Windows Server
(Wk4)

0

1

2

3

4

5

6

7

8

9

10

20
7.4

6.1
57

.12
5:8

0

20
7.4

6.2
09

.12
6:8

0

20
7.4

6.2
11

.12
6:8

0

20
7.4

6.2
12

.62
:80

20
7.4

6.2
12

.62
:80

20
7.4

6.2
12

.62
:80

20
7.4

6.2
12

.62
:80

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
0:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

21
6.2

28
.2.

18
2:8

0

64
.4.

21
.91

:44
3

IP:Port Address

R
at

io

Figure 10. Plot of Ratio of Received to Sent Bytes for Windows Server (Week 4).

27

E. TIME DOMAIN ANALYSIS
We coded a simple Java program to add two fields to the each packet obtained

from the Tcpdump data. The fields were cumulative count and cumulative size of the

packet for each session. We further processed the data to obtain the ratio of actual

cumulative size to estimated cumulative size, where the estimated cumulative size is the

product of current packet size and quantity of packets received in the session. Under

normal circumstances, the ratio should be close to one to indicate a consistent flow of

bytes between the two sockets. It was however not predictably observed from our data.

A trend of the ratio nearly constant might indicate a standard automated scan, for

instance a TCP SYN flag scan, or it could be a perfectly legitimate session with packets

of similar sizes. However, a legitimate session should usually terminate with a spike for

the ratio. This assumes that the best way to transfer bytes across the network should

maximize the bandwidth to the limit of the maximum transfer unit (MTU), as for instance

1500 bytes for the Ethernet. As the last packet transferred under such circumstances

might not be a full 1500 bytes, this could result in a spike in the ratio.

Figure 11 shows that the host Linux operating system had high-intensity packet

traffic at the beginning and at 360000 seconds. In addition, there were also four clusters

of relatively low-intensity traffic. We realized that the four clusters corresponded to daily

system network maintenance, whereas the first spike indicated the traffic created during

the initial honeynet setup. Since the honeynet setup was performed on a Thursday, the

second spike corresponded the service check conducted on the following Monday.

28

Plot of Ratio of Actual to Estimated Size vs Time for Linux
(Wk2)

0

5

10

15

20

25

0 50000 100000 150000 200000 250000 300000 350000 400000

Time in Seconds

R
at

io

Figure 11. Plot of Ratio of Actual to Estimated Size against Time for Linux Host

Operating System (Week 2).

Figure 12 showing the traffic on the Windows Advanced Server is considerably more

eventful. It illustrates the effect of our IP address advertisement on blogs and hacker

discussion forums. We observed high intensity traffic in the around the ratio of 1. In

addition, the relatively high intensity of data points in the vertical direction indicated that

packet traffic occurred very quickly. Since this was a honeynet machine, traffic of such

extent and intensity should not be observed unless there were automated reconnaissances.

The second observation was the relatively consistent ceiling at a ratio of 24. Assuming

that software made the best effort to maximize of the utility of the 1500 bytes MTU, we

could see there were numerous interweaving scanning packets of approximately 60 bytes

with other potentially legitimate data transfers (at 1500 bytes).

29

Figure 12. Plot of Ratio of Actual to Estimated Size against Time for Windows 2000

Advanced Server Operating System (Week 3).

F. PACKET SIZE ANALYSIS

We attempted to observe the trends in the distribution of size of packets received

by the honeynet. Figures 13, 14 and 15 shows the frequency of size of each packet

received by the honeynet collected over three weeks,, respectively. The modes of week 2

and 3 indicate high frequency of data transfer where the packet sizes reach the limit of the

Ethernet MTU. This is commonly observed in any Ethernet network. The mode for

week 4 indicates that a relatively high frequency of packet sizes between 50 to 100 bytes.

This may be useful to indicate reconnaissance activities. We investigated further into

these small packets in the next section.

30

Histogram of Size of Packet (Week 2)

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 More

Size

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency
Cumulative %

Figure 13. Histogram of Size of Packets Received by Fake Honeynet (Week 2).

Histogram of Size of Packet (Week 3)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 More

Size

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency
Cumulative %

Figure 14. Histogram of Size of Packets Received by Fake Honeynet (Week 3).

31

Histogram of Size of Packet (Week 4)

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 More

Size

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency
Cumulative %

Figure 15. Histogram of Size of Packets Received by Fake Honeynet (Week 4).

G. LAST PACKET RECEIVED ANALYSIS
We developed another Java program to extract information pertaining to the last

received packet of each connection between two IP addresses (regardless of ports). A

connection between two machines could be made up of several sessions. Since the

honeynet was not designed to be a production system, termination of a connection might

indicate a loss of interest or actual fear of the honeynet. The results generated from the

Tcpdump data using the Java class was plotted into histograms as shown in Figures 16,

17 and 18. It can be observed that these plots are cleaner modulated plots of Figures 13,

14 and 15, respectively. The histograms revealed that three distinct regions of sizes with

relatively high frequency. They were last-packet sizes of 50-100, 500-600, and 900-950

bytes. Following the above discussion on small packets, we tabulated the percentage of

traffic where the last-packet size was between 50 and 100 bytes, in Table 5.

32

Data Set Percentage of Traffic

Week 2 44%

Week 3 79%

Week 4 10%

Table 5. Percentage of Traffic with Packet Size Between 50 and 100 Bytes.

Week 3 was the week when we solicited traffic through active advertisement.

Near to 80% of the connections ended with packets of size between 50 to 100 bytes.

While we could not assert if the cyber-attackers were aware of the existence of our fake

honeynet, the above traffic might fit into a typical departure signature during

reconnaissance.

Histogram of Size of Last Packet (Week 2)

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 More

Size

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency

Cumulative %

Figure 16. Histogram of Size of Last Received Packet by Fake Honeynet (Week 2).

33

Histogram of Size of Last Packet (Week 3)

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 More

Size

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency

Cumulative %

Figure 17. Histogram of Size of Last Received Packet by Fake Honeynets (Week 3).

Histogram of Size of Last Packet (Week 4)

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 More

Size

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency

Cumulative %

Figure 18. Histogram of Size of Last Received Packet by Fake Honeynets (Week 4).

34

We further investigated into the distribution of protocol and flags of the last

received packets for our self-contained virtual honeypots. Tables 6, 7 and 8 shows the

distribution of the protocol and flags set for the last packets received by our self-

contained virtual honeypots .

Source IP Protocol TCP UDP ACK PSH RST SYN FIN
DON'T
FRAG

MORE
FRAG

221.208.208.92 Messenger 0 1 0 0 0 0 0 0 0
62.213.130.127 Messenger 0 1 0 0 0 0 0 0 0
221.208.208.83 Messenger 0 1 0 0 0 0 0 0 0
202.97.238.196 Messenger 0 1 0 0 0 0 0 0 0
202.97.238.203 Messenger 0 1 0 0 0 0 0 0 0
216.239.53.9 TCP 1 0 1 0 1 0 0 0 0
216.239.37.104 TCP 1 0 1 0 0 0 0 0 0
216.231.63.58 TCP 1 0 1 0 0 0 0 0 0
66.102.7.99 TCP 1 0 1 0 0 0 0 0 0
66.230.200.100 TCP 1 0 1 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
66.102.7.99 TCP 1 0 0 0 1 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
66.102.7.99 TCP 1 0 0 0 1 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0

Total 7 9 5 0 3 0 0 0 0

Table 6. Distribution of Protocol and Flags for Last Packets (Week 2).

Source IP Protocol TCP UDP ACK PSH RST SYN FIN
DON'T
FRAG

MORE
FRAG

66.102.7.99 TCP 1 0 1 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
63.245.209.31 TCP 1 0 1 0 0 0 0 0 0
66.35.214.30 TCP 1 0 1 0 0 0 0 0 0
207.46.216.56 TCP 1 0 1 0 0 0 0 0 0
207.46.216.62 TCP 1 0 1 0 0 0 0 0 0
128.241.21.146 TCP 1 0 1 0 1 0 0 0 0
216.73.86.52 TCP 1 0 1 0 0 0 0 0 0
216.73.86.91 TCP 1 0 1 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
207.46.130.100 NTP 0 1 0 0 0 0 0 0 0
207.46.209.126 TCP 1 0 1 0 1 0 0 0 0
65.55.192.29 TCP 1 0 1 0 1 0 0 0 0
207.46.212.62 TCP 1 0 1 0 1 0 0 0 0
131.107.115.28 TCP 1 0 1 0 1 0 0 0 0

35

Source IP Protocol TCP UDP ACK PSH RST SYN FIN
DON'T
FRAG

MORE
FRAG

207.46.13.30 TCP 1 0 1 0 1 0 0 0 0
207.46.221.222 TCP 1 0 1 0 1 0 0 0 0
207.46.13.28 TCP 1 0 1 0 1 0 0 0 0
66.77.84.82 TCP 1 0 1 0 1 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
66.77.84.82 TCP 1 0 1 0 1 0 0 0 0
207.46.212.62 TCP 1 0 1 0 1 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0

Total 18 6 18 0 11 0 0 0 0

Table 7. Distribution of Protocol and Flags for Last Packets (Week 3).

Source IP Protocol TCP UDP ACK PSH RST SYN FIN
DON'T
FRAG

MORE
FRAG

66.102.7.99 TCP 1 0 1 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
210.51.23.237 Messenger 0 1 0 0 0 0 0 0 0
204.16.208.80 Messenger 0 1 0 0 0 0 0 0 0
195.27.116.145 Messenger 0 1 0 0 0 0 0 0 0
194.174.170.115 Messenger 0 1 0 0 0 0 0 0 0
204.16.208.52 Messenger 0 1 0 0 0 0 0 0 0
210.51.21.136 Messenger 0 1 0 0 0 0 0 0 0
207.46.130.100 NTP 0 1 0 0 0 0 0 0 0
202.97.238.196 Messenger 0 1 0 0 0 0 0 0 0
202.97.238.195 Messenger 0 1 0 0 0 0 0 0 0
220.164.140.249 Messenger 0 1 0 0 0 0 0 0 0
218.10.137.140 Messenger 0 1 0 0 0 0 0 0 0
207.46.209.126 TCP 1 0 1 0 1 0 0 0 0
194.145.63.131 Messenger 0 1 0 0 0 0 0 0 0
195.0.19.0 Messenger 0 1 0 0 0 0 0 0 0
194.221.241.74 Messenger 0 1 0 0 0 0 0 0 0
60.11.125.44 Messenger 0 1 0 0 0 0 0 0 0
221.209.110.48 Messenger 0 1 0 0 0 0 0 0 0
194.112.90.240 Messenger 0 1 0 0 0 0 0 0 0
204.16.208.75 Messenger 0 1 0 0 0 0 0 0 0
60.11.125.42 Messenger 0 1 0 0 0 0 0 0 0
194.239.12.110 Messenger 0 1 0 0 0 0 0 0 0
194.40.92.223 Messenger 0 1 0 0 0 0 0 0 0
202.97.238.201 Messenger 0 1 0 0 0 0 0 0 0
204.16.208.66 Messenger 0 1 0 0 0 0 0 0 0
221.208.208.92 Messenger 0 1 0 0 0 0 0 0 0
204.16.208.49 Messenger 0 1 0 0 0 0 0 0 0
221.208.208.98 Messenger 0 1 0 0 0 0 0 0 0
194.253.130.89 Messenger 0 1 0 0 0 0 0 0 0
194.216.135.144 Messenger 0 1 0 0 0 0 0 0 0
204.16.209.20 Messenger 0 1 0 0 0 0 0 0 0

36

Source IP Protocol TCP UDP ACK PSH RST SYN FIN
DON'T
FRAG

MORE
FRAG

207.46.212.62 TCP 1 0 1 0 1 0 0 0 0
207.46.253.157 TCP 1 0 1 0 1 0 0 0 0
204.16.208.23 Messenger 0 1 0 0 0 0 0 0 0
202.97.238.202 Messenger 0 1 0 0 0 0 0 0 0
221.209.110.47 Messenger 0 1 0 0 0 0 0 0 0
221.208.208.103 Messenger 0 1 0 0 0 0 0 0 0
221.10.224.253 Messenger 0 1 0 0 0 0 0 0 0
221.208.208.212 Messenger 0 1 0 0 0 0 0 0 0
221.208.208.90 Messenger 0 1 0 0 0 0 0 0 0
202.97.238.199 Messenger 0 1 0 0 0 0 0 0 0
221.208.208.99 Messenger 0 1 0 0 0 0 0 0 0
221.209.110.49 Messenger 0 1 0 0 0 0 0 0 0
60.11.125.54 Messenger 0 1 0 0 0 0 0 0 0
216.228.2.120 DNS 0 1 0 0 0 0 0 0 0
221.208.208.83 Messenger 0 1 0 0 0 0 0 0 0

Total 4 44 4 0 3 0 0 0 0

Table 8. Distribution of Protocol and Flags for Last Packets (Week 4).

We were, however, unable to observe any other trends of interest, except for the

unusually high User Datagram Protocol (UDP) packets on Week 4, despite the reduction

of network traffic, as mentioned in Section B of this Chapter. We correlated these UDP

packets with their sizes and realized that they were responsible for two other modal

regions where packet sizes ranged within 500-600 and 900-950 bytes. We checked

associated source IP addresses of all last packets received by our honeypots and realized

that our previous observation of packet sizes between 50-100 bytes belonged to

legitimate traffic generated during the set-up of our honeypots. They were from

organizations like Google, Microsoft Corporation, and Redshift (that hosted our DNS

server). Further packet inspections revealed no malicious intent. This, had, however,

masked the potential signatures of the other two modal regions. Table 9 shows the

organization names and countries of location of the source IP addresses responsible for

the last packets in Week 4. Deep inspection of packets with Messenger (UDP) protocol

revealed malicious intent, since they attepted to persuade users to download Windows

registry updates when they were not authoritative sources. The intent might be to decept

37

unwary user to assist the cyber-attackers to download root-kits from the designated

websites. Figures 19 and 20 show content of malicious intent in packets responsible for

the 500-600 and 900-950 bytes modal regions, respectively.

Source IP Protocol Size Organization Name Location
66.102.7.99 TCP 60 GOOGLE USA
216.228.2.120 DNS 239 REDSHIFT USA
216.228.2.120 DNS 334 REDSHIFT USA
210.51.23.237 Messenger 501 CNCNET-CN CHINA
204.16.208.80 Messenger 557 FAST-COLOCATION USA
195.27.116.145 Messenger 922 CW SPAIN
194.174.170.115 Messenger 922 AS702 GERMANY
204.16.208.52 Messenger 557 FAST-COLOCATION USA
210.51.21.136 Messenger 501 CNCNET-CN CHINA
207.46.130.100 NTP 90 MICROSOFT CORP USA
202.97.238.196 Messenger 499 CHINA169-BACKBONE CHINA
202.97.238.195 Messenger 500 CHINA169-BACKBONE CHINA
220.164.140.249 Messenger 942 CHINA169-BACKBONE CHINA
218.10.137.140 Messenger 500 CHINA169-BACKBONE CHINA
207.46.209.126 TCP 60 MICROSOFT CORP USA
194.145.63.131 Messenger 922 DIRBG-AS BULGARIA
195.0.19.0 Messenger 922 SCARLET BELGIUM
194.221.241.74 Messenger 922 CW GERMANY
60.11.125.44 Messenger 940 CHINA169-BACKBONE CHINA
221.209.110.48 Messenger 499 CHINA169-BACKBONE CHINA
194.112.90.240 Messenger 922 CW GERMANY
204.16.208.75 Messenger 458 FAST-COLOCATION USA
60.11.125.42 Messenger 942 CHINA169-BACKBONE CHINA
194.239.12.110 Messenger 922 TDC DENMARK
194.40.92.223 Messenger 922 UNSPECIFIED SWITZERLAND
202.97.238.201 Messenger 500 CHINA169-BACKBONE CHINA
204.16.208.66 Messenger 459 FAST-COLOCATION USA
221.208.208.92 Messenger 499 CHINA169-BACKBONE CHINA
204.16.208.49 Messenger 459 FAST-COLOCATION USA
221.208.208.98 Messenger 499 CHINA169-BACKBONE CHINA
194.253.130.89 Messenger 922 IANA-RSVD-0 DENMARK
194.216.135.144 Messenger 922 AS702 UK
204.16.209.20 Messenger 458 FAST-COLOCATION USA
207.46.212.62 TCP 60 MICROSOFT CORP USA
207.46.253.157 TCP 60 MICROSOFT CORP USA
204.16.208.23 Messenger 459 FAST-COLOCATION USA
202.97.238.202 Messenger 500 CHINA169-BACKBONE CHINA
221.209.110.47 Messenger 500 CHINA169-BACKBONE CHINA
221.208.208.103 Messenger 499 CHINA169-BACKBONE CHINA
221.10.224.253 Messenger 955 CHINA169-BACKBONE CHINA
221.208.208.212 Messenger 499 CHINA169-BACKBONE CHINA

38

Source IP Protocol Size Organization Name Location
221.208.208.90 Messenger 501 CHINA169-BACKBONE CHINA
202.97.238.199 Messenger 500 CHINA169-BACKBONE CHINA
221.208.208.99 Messenger 499 CHINA169-BACKBONE CHINA
221.209.110.49 Messenger 500 CHINA169-BACKBONE CHINA
60.11.125.54 Messenger 500 CHINA169-BACKBONE CHINA
216.228.2.120 DNS 501 REDSHIFT USA
221.208.208.83 Messenger 500 CHINA169-BACKBONE CHINA

Table 9. Organization Name and Location of Source IP Addresses for Week 4.

Figure 19. Screen Capture of Packet Inspection for Packet from IP Address

210.51.23.237 (Packet Size = 501).

39

Figure 20. Screen Capture of Packet Inspection for Packet from IP Address

194.145.63.131 (Packet Size = 922).

Figure 21 shows the distribution of the sizes of malicious Messenger (UDP)

protocol packets. We observed that frequencies of packet size of (500 ± 1) and 922

bytes were significantly higher. This might indicate that these two packets were more

popular with the cyber-attackers and would serve as good signatures. These attacks,

40

however, were passive and would require cooperation of users. In our context, our

honeypot may eventually frustrate the cyber-attackers as they gradually learn that we do

not intend to cooperate with them (in the downloading of root-kits).

Frequency of Packet Sizes for Messenger Protocol

0

2

4

6

8

10

12

458 459 499 500 501 557 922 940 942 955

Packet Size (Bytes)

Fr
eq

ue
nc

y

Figure 21. Frequency Plot of Malicious Packet Sizes.

41

VI. CONCLUSIONS

The elementary principle of all deception is to attract the enemy's attention
to what you wish him to see and to distract his attention from what you do
not wish him to see. It is by these methods that the skilful conjuror obtains
his results. –

Memo to Chiefs of Staff, 1940 from General Wavell, Middle East
Commander (1939-41)

A. CONCLUSIONS
We began the investigation to try to confirm the existence of avoidance behavior

induced by a honeynet. We intend to exploit this factor on real production systems to

deceive cyber-attackers to avoid further reconnaissance and compromise. We based our

investigation on the assumption of some awareness and availability of anti-honeypot

technology among the cyber-attacker community. As we did not see evidence of

exploitation after active reconnaissance, our fake honeynet setup did at least withstand

exposure to the cyber-attackers for 28 days.

While camouflage does not provide physical protection to the soldiers against

hostile rounds, it offers concealment through obscurity. The deployment of a fake

honeynet aims to achieve similar effects by concealing our real production systems from

cyber-attackers. In addition, the fake honeynet serves as protective mimicry when it

encounters a cyber-attacker, much as how some butterflies create confusing patterns on

their wings that look like eyes to fool predators. We believe that widespread deployment

of fake honeynets amidst real honeynets may create further confusion for cyber-attackers

and delay or impede their attacks. It should be noted that security administrators should

not solely rely on fake honeypots for protection, but skillfully use it as one component in

the defense-in-depth information security strategy.

The protection of information system is a broad and complex problem as opposed

to the relative simplicity of a successful exploitation. As such, security professionals

have been lagging in the race against the hackers. With the introduction of honeynets and

fake honeynets we can reverse the security power balance. Professional hackers will

42

have to keep pace with the honeynet development and devote resources to develop anti-

honeynet technology or risk their prized techniques of exploitation and a higher chance of

being caught and prosecuted.

B. APPLICATIONS
Fake honeynets can be extended to Rapid Response Command and Control

(R2C2) systems, scalable communications for regional combatant commanders

developed by the Deployable Joint Command and Control (DJC2) (SEA-9 R2C2 Team,

2006). The self-contained nature of a fake honeynet makes it a suitable lightweight

candidate for R2C2 systems while providing a two-man team adequate obscurity in

potentially hostile deployed environment.

C. FUTURE WORKS

A goal of this thesis assesses the effects of honeynet on cyber-attackers. Despite

our IP address advertisements, our fake honeynet received significantly lower traffic

volume. It may be attributed to duration of exposure. While we have deployed a high-

interaction honeynet, our collection mechanism still relies on the initiatives of cyber-

attackers to explore and exploit. To enhance the rate of solicitation and clarity in the

cause-and-effect, we will need to be more active in our interaction. We suggest the

following future investigations

1. Tailored Responses to Cyber-attackers. We need to log reactive behaviors of

cyber-attackers to our various specific responses to their reconnaissance. This will

provide better clarity on effects of deterring responses. This can be explored with

Snort_inline.

2. In-depth Exploration and Exploitation. In the next phase, cyber-attackers

should be allowed easy access into the depth of the honeynets. This will allow us to

understand the exploration and exploitation mechanism as well as the reactions (to

honeynet) beyond the reconnaissance phase.

43

3. Lightweight, High-interaction Honeynets. We need to continue to design

lightweight, high-interaction honeynets. This will facilitate easy deployment of

honeynet. In addition, it can be installed on real production systems and function as a

honeynet inoculation.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

APPENDIX A. RESULT PLOTS

A. RESULTS FROM SESSION ANALYSIS

Plot of Ratio of Received to Sent Bytes for Host Linux (Wk2)

0

2

4

6

8

10

12

66
.10

2.7
.99

:80

66
.10

2.7
.99

:80

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.10
0:8

0

66
.23

0.2
00

.22
8:8

0

66
.23

0.2
00

.22
8:8

0

IP:Port Address

R
at

io

Figure 22. Plot of Ratio of Received to Sent Bytes for Host Linux (Week 2).

46

Plot of Ratio of Received to Sent Bytes for Windows XP (Wk 2)

0

1

2

3

4

5

6

7

8

9

216.231.63.58:80 216.231.63.58:80 216.231.63.58:80 216.231.63.58:80 66.102.7.99:80 66.102.7.99:80 66.102.7.99:80

IP:Port Address

R
at

io

Figure 23. Plot of Ratio of Received to Sent Bytes for Windows XP (Week 2).

Plot of Ratio of Received to Sent Bytes for Linux (Wk3)

0

1

2

3

4

5

6

7

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

21
6.

22
8.

2.
12

0:
53

IP:Port Address

R
at

io

Figure 24. Plot of Ratio of Received to Sent Bytes for Linux (Week 3).

47

Plot of Ratio of Received to Sent Bytes for Windows XP (Wk3)

0

0.5

1

1.5

2

2.5

207.46.130.100:123 216.228.2.120:53 216.228.2.120:53 216.228.2.120:53

IP:Port Address

R
at

io

Figure 25. Plot of Ratio of Received to Sent Bytes for Windows XP (Week 3).

Plot of Ratio of received to Sent Bytes for Linux (Wk4)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

63
.24

5.2
09

.31
:44

3

66
.10

2.7
.99

:80

66
.10

2.7
.99

:80

IP:Port Address

R
at

io

Figure 26. Plot of Ratio of Received to Sent Bytes for Linux (Week 4).

48

Plot of Ratio of Received to Sent Bytes for Windows XP (Wk4)

0

1

2

3

4

5

6

66.102.7.147:80 66.102.7.147:80

IP:Port Address

R
at

io

Figure 27. Plot of Ratio of Received to Sent Bytes for Windows XP (Week 4).

49

B. RESULTS FROM TIME DOMAIN ANALYSIS

Plot of Ratio of Actual to Estimated Session Size vs Time for
Windows 2000 Advance Server (Wk2)

-2

0

2

4

6

8

10

12

14

16

18

20

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Time in Seconds

R
at

io

Figure 28. Plot of Ratio of Actual to Estimated Size against Time for Windows 2000

Advanced Server Operating System (Week 2).

Figure 29. Plot of Ratio of Actual to Estimated Size against Time for Linux Host

Operating System (Week 3).

50

Plot of Ratio of Actual to Estimated Session Size vs Time for
Windows XP (Wk3)

0

5

10

15

20

25

2620 2640 2660 2680 2700 2720 2740 2760

Time in Seconds

R
at

io

Figure 30. Plot of Ratio of Actual to Estimated Size against Time for Windows XP

Operating System (Week 3).

Plot of Ratio of Actual to Estimated Session Size vs Time for
Linux (Wk4)

0

2

4

6

8

10

12

14

16

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Time in Seconds

R
at

io

Figure 31. Plot of Ratio of Actual to Estimated Size against Time for Linux Host

Operating System (Week 4).

51

Plot of Ratio of Actual to Estimated Session Size vs Time for
Windows 2000 Advance Server (Wk4)

0

2

4

6

8

10

12

14

16

18

20

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Time in Seconds

R
at

io

Figure 32. Plot of Ratio of Actual to Estimated Size against Time for Windows 2000

Advanced Server Operating System (Week 4).

Plot of Ratio of Actual to Estimated Session Size vs Time for
Windows XP (Wk4)

0

1

2

3

4

5

6

7

8

9

2848 2850 2852 2854 2856 2858 2860 2862 2864

Time in Seconds

R
at

io

Figure 33. Plot of Ratio of Actual to Estimated Size against Time for Windows XP

Operating System (Week 4).

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

APPENDIX B. SOURCE CODES

/* Obtain the information for Tcpdump and generate the sum(size) and
//count(packet) for all socket pairs across time.
// Name tcpdumpAnalysisSocketPairSizeCountTime.java
// Author@ Harry Lim
// Created on November 28, 2006, 12:21 PM

import java.io.*;
import java.util.*;

class TcpdumpAnalysisSocketPairSizeCountTime {
 public static void main (String args[]) throws IOException {

 String Input, filename, ipAddress;
 int index= 0;
 int max = 500000;
 boolean update;
 int [] size;
 double [] time;
 String ia, garbage;
 String [] srcIP, srcPort, destIP, destPort, protocol;
 StringTokenizer str;

 //Connection database
 int i,j,jMax,k;
 int [] sizeCurrent, sumSizeCurrent, connectionCount;
 double [] timeCurrent;
 String [] srcIPCurrent, srcPortCurrent, destIPCurrent,
destPortCurrent, protocolCurrent;

 //Initialise input data array
 size = new int [max];
 time = new double [max];
 srcIP = new String [max];
 srcPort = new String [max];
 destIP = new String [max];
 destPort = new String [max];
 protocol = new String [max];

 //Initialise storage data array
 sumSizeCurrent = new int [max];
 connectionCount = new int [max];
 sizeCurrent = new int [max];
 timeCurrent = new double [max];
 srcIPCurrent = new String [max];
 srcPortCurrent = new String [max];
 destIPCurrent = new String [max];
 destPortCurrent = new String [max];
 protocolCurrent = new String [max];

 //Reading from Tcpdump txt file

54

 filename = args[0];

 System.out.println("Enter Honeypot IP Address: ");
 BufferedReader in = new BufferedReader(new
 InputStreamReader(System.in));
 ia = in.readLine();

 FileReader fr = new FileReader(filename);
 BufferedReader br = new BufferedReader(fr);
 //Start-To be removed; for debugging only
// PrintWriter fileout = new PrintWriter(new FileWriter("debug-
verify-initialization.txt"));
 //End-To be removed.
 while ((Input = br.readLine()) != null) {
 str = new StringTokenizer (Input);
 if (str.countTokens() == 9)
 {
// System.out.println("Error: Wrong number of
tokens");
// return;
// }
 garbage = str.nextToken(); //digest serial number token
 time [index] = Double.parseDouble(str.nextToken());
 srcIP [index] = str.nextToken();
 srcPort [index] = str.nextToken();
 destIP [index] = str.nextToken();
 destPort [index] = str.nextToken();
 protocol [index] = str.nextToken();
 size [index] = Integer.parseInt(str.nextToken());
// System.out.println("SourceIP: "+srcIP[index]+" \t
SourcePort: "+srcPort[index]+" \t Dest IP: "+destIP[index]+" \t
destPort: "+destPort[index]+" \t Protocol: "+protocol[index]+" \t size:
"+size[index]"\n");
// fileout.println("Time: " +time[index]+"SourceIP:
"+srcIP[index]+" \t SourcePort: "+srcPort[index]+" \t Dest IP:
"+destIP[index]+" \t destPort: "+destPort[index]+" \t Protocol:
"+protocol[index]+" \t size: "+size[index]);
 System.out.println("Index: "+index);
 index ++;
 }
 }

///
////////////////////
// Socket Pair Filtering:
// - determine connection between two socket pairs with designated IP
address,
// - record their time
// - record their size
// - record their sum of size (to current time)

// i is the counter for the raw database.
// jMax is the maximum number of connections.
 jMax = 0;
// connectionCount[jMax] is the counter of the time-IPsocketPair-bytes
Database
 for (i=0; i < index; i++){

55

 update = false;
// System.out.println("IP Address:
"+ia+"SrcIP"+srcIP[i]+"DestIP"+destIP[i]);
 if ((srcIP[i].equals(ia)) || (destIP[i].equals(ia))){
//Initialized interested database for specific IP address (of honeynet)
 timeCurrent [jMax] = time [i];
//
System.out.println("True!"+timeCurrent[jMax]+"\t time = "+ time[i]);
 srcIPCurrent [jMax] = srcIP[i];
 srcPortCurrent [jMax] = srcPort[i];
 destIPCurrent [jMax] = destIP[i];
 destPortCurrent [jMax] = destPort[i];
 protocolCurrent [jMax] = protocol[i];
 sizeCurrent [jMax] = size[i];
// j is the counter for the connection database
 for (j = 0; j < jMax; j++){
 if (srcIP[i].equals(srcIPCurrent[j]) &&
destIP[i].equals(destIPCurrent[j]) &&
srcPort[i].equals(srcPortCurrent[j]) &&
destPort[i].equals(destPortCurrent[j])){
// This implies an older ip socket pair exists. Update the sum of size
and count for that connection.
 sumSizeCurrent[jMax] =
sumSizeCurrent[j]+sizeCurrent[jMax];
 connectionCount[jMax] =
connectionCount[j]+1;
 update = true;
 }

 }
// This implies a new ip pair since the search is always in strictly
incremental time.

 if (update != true){
 sumSizeCurrent [jMax] = size[i];
 connectionCount [jMax]= 1;
 }
 jMax++;
 }
 }

///
/////////////////////

///
/////////////////////
//Print the Last packets to file:
 PrintWriter socketPairSizeCount = new PrintWriter(new
FileWriter("socketPairSizeCount"+filename+ia+".txt"));
 for (k = 0; k < jMax; k++){
 // socketPairSizeCount.println(k+"\t SN: "+ snLast[k]+"\t time:
" + timeLast[k]+" \t source: "+sourceLast[k]+" \t srcport:
"+srcportLast[k]+" \t dest: "+destLast[k]+" \t destport:
"+destportLast[k]+" \t protocol: "+protocolLast[k]+" \t size:
"+sizeLast[k]+"\t CumSize: "+cumSize[index]+"\n");

56

 socketPairSizeCount.println(timeCurrent[k]+"
\t"+srcIPCurrent[k]+" \t"+srcPortCurrent[k]+" \t"+destIPCurrent[k]+"
\t"+destPortCurrent[k]+" \t"+protocolCurrent[k]+" \t"+sizeCurrent[k]+"
\t"+sumSizeCurrent[k]+"\t"+connectionCount[k]);
 }
// socketPairSizeCount.println ("\nTotal Last Packets = "+jMax);
 socketPairSizeCount.close();
///
/////////////////////
 fr.close();
 //Start-To be removed; for debugging only
// fileout.close();
 //End-To be removed.

 }
}

57

//Obtain meta-data of Last packet of the connection between two
//machinces.
//Name tcpdumpAnalysisConnectionLastPacket.java
// Author@ Harry Lim
// Created on November 21, 2006, 12:21 PM

import java.io.*;
import java.util.*;

class TcpdumpAnalysisConnectionLastPacket {
 public static void main (String args[]) throws IOException {

 String Input, filename;
 int index= 0;
 int max = 500000;
 int [] sn, size, cumSize;
 double [] time;
 String [] source, srcport, dest, destport, protocol;
 StringTokenizer str;

 //Last packet database
 int i,j,jMax,k, update;
 int indexLast = 0;
 int maxLast = 500000;
 int [] snLast, sizeLast, cumSizeLast;
 double [] timeLast;
 String garbage;
 String [] sourceLast, srcportLast, destLast, destportLast,
protocolLast;

 //Initialise data array
 size = new int [max];
 time = new double [max];
 source = new String [max];
 srcport = new String [max];
 dest = new String [max];
 destport = new String [max];
 protocol = new String [max];

 //Initialise Last packet data array

 sizeLast = new int [max];
 cumSizeLast= new int [max];
 timeLast = new double [max];
 sourceLast = new String [max];
 srcportLast = new String [max];
 destLast = new String [max];
 destportLast = new String [max];
 protocolLast = new String [max];

 //Reading from Tcpdump txt file

 filename = args[0];

58

 FileReader fr = new FileReader(filename);
 BufferedReader br = new BufferedReader(fr);
 while ((Input = br.readLine()) != null) {
 str = new StringTokenizer (Input);
 if (str.countTokens() == 9)
 {
// System.out.println("Error: Wrong number of
tokens");
// return;
// }
 garbage = str.nextToken();
 time [index] = Double.parseDouble(str.nextToken());
 source [index] = str.nextToken();
 srcport [index] = str.nextToken();
 dest [index] = str.nextToken();
 destport [index] = str.nextToken();
 protocol [index] = str.nextToken();
 size [index] = Integer.parseInt(str.nextToken());
// cumSize[index] = Integer.parseInt(str.nextToken());
// System.out.println("SN: "+ sn[index]+"\t time: " +
time[index]+" \t source: "+source[index]+" \t srcport:
"+srcport[index]+" \t dest: "+dest[index]+" \t destport:
"+destport[index]+" \t protocol: "+protocol[index]+" \t size:
"+size[index]+"\t CumSize: "+cumSize[index]+"\n");
// fileout.println("SN: "+ sn[index]+"\t time: " +
time[index]+" \t source: "+source[index]+" \t srcport:
"+srcport[index]+" \t dest: "+dest[index]+" \t destport:
"+destport[index]+" \t protocol: "+protocol[index]+" \t size:
"+size[index]+"\t CumSize: "+cumSize[index]+"\n");
 System.out.println("Time: "+ time[index]);
 index ++;
 }
 }

///
////////////////////
// Last packet analysis: determine last packet connection between two
ip address.

// i is the counter for the raw database.
 i = 0;
// j is the counter for the Last packet database.
 j = 0;
// jMax is the maximum number of last packets.
 jMax = 0;
 for (i=0; i < index; i++){
 update = 0;
 for (j=0; j < jMax; j++){
 if (((source[i].equals(sourceLast[j]) &&
dest[i].equals(destLast[j])) || (source[i].equals(destLast[j]) &&
dest[i].equals(sourceLast[j]))) && (time [i] >= timeLast [j])){
// This implies an older ip pair exists.
 timeLast [j] = time [i];
 sourceLast [j] = source[i];
 srcportLast [j] = srcport[i];
 destLast [j] = dest[i];
 destportLast [j] = destport[i];

59

 protocolLast [j] = protocol[i];
 sizeLast [j] = size[i];
 cumSizeLast [j] = cumSizeLast[j] + size[i];
 update = 1;
 //populate the rest of the data less the source and
dest ip.
 }
 }
 if ((update != 1)){
// This implies a new ip pair since the search is always in strictly
incremental time.
 timeLast [jMax] = time [i];
 sourceLast [jMax] = source[i];
 srcportLast [jMax] = srcport[i];
 destLast [jMax] = dest[i];
 destportLast [jMax] = destport[i];
 protocolLast [jMax] = protocol[i];
 sizeLast [jMax] = size[i];
 cumSizeLast [jMax] = size [i];
 jMax++;
 }
 }

///
/////////////////////

///
/////////////////////
//Print the Last packets to file:
 PrintWriter lastPackets = new PrintWriter(new
FileWriter("lastPacket"+filename+".txt"));
 for (k = 0; k < jMax; k++){
 // lastPackets.println(k+"\t SN: "+ snLast[k]+"\t time: " +
timeLast[k]+" \t source: "+sourceLast[k]+" \t srcport:
"+srcportLast[k]+" \t dest: "+destLast[k]+" \t destport:
"+destportLast[k]+" \t protocol: "+protocolLast[k]+" \t size:
"+sizeLast[k]+"\t CumSize: "+cumSize[index]+"\n");
 lastPackets.println("\t" + timeLast[k]+" \t"+sourceLast[k]+"
\t"+srcportLast[k]+" \t"+destLast[k]+"
\t"+destportLast[k]+"\t"+protocolLast[k]+"\t"+sizeLast[k]+"\t"+cumSizeL
ast[k]);
 }
// lastPackets.println ("\nTotal Last Packets = "+jMax);
 lastPackets.close();
///
/////////////////////
 fr.close();
// fileout.close();
 }
}

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

LIST OF REFERENCES

1. Boyd, John (September 1976). Destruction & Creation. Retrieved December
2006 from
http://www.belisarius.com/modern_business_strategy/boyd/destruction/destructio
n_and_creation.htm.

2. Duong, Binh T. (March 2006). M.S. thesis, Naval Postgraduate School:
Comparisons of Attacks on Honeypots with Those on Real Networks. Retrieved
December 2006 from www.cs.nps.navy.mil/people/faculty/rowe/oldstudents/
duong_thesis.htm.

3. The Honeynet Project. (2004). Know Your Enemy: Learning about Security
Threats, Second Edition, Boston, MA: Addison-Wesley.

4. Jones, Keith J., Bejtlich, Richard, Rose, Curtis W. (2006). Real Digital Forensics:
Computer Security and Incident Response. Upper Saddle River, NJ: Addison-
Wesley.

5. Krawetz, Neal. (January/February 2004). IEEE Security and Privacy: Anti-
Honeypot Technology.

6. Rash, Michael, Orebaugh, Angela, Clark, Graham, Pinkard, Becky & Babbin,
Jake (2005). Intrusion Prevention and Active Response: Deploying Network and
Host IPS. Rockland, MA: Sygress Publishing, Inc.

7. Rowe, Neil C. (January 2006). Proc. 39th Hawaii International Conference on
Systems Sciences: Measuring the Effectiveness of Honeypot Counter-
counterdeception. Poipu, HI.

8. Rowe, Neil C., Duong, B. T., and Custy, John. (June 2006). Proceedings of the
7th IEEE Workshop on Information Assurance: Fake Honeypots: A Defensive
Tactic for Cyberspace. West Point, NY.

9. SEA-9 (R2C2) Team. (June 2006). Naval Postgraduate School: Rapid Response
Command and Control (R2C2): A System Engineering Analysis of Scalable
Communications for Regional Combatant Commanders.

10. Swiderski, Frank and Synder, Window. (2004). Threat Modeling. Redmond, WA:
Microsoft Press.

11. Thorsten Holz and Frederic Raynal. (June 2005). Proceedings of the 6th IEEE
Workshop on Information Assurance and Security: Detecting Honeypots and
Other Suspicious Environments. West Point, NY.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Neil Roweu
Naval Postgraduate School
Monterey, California

4. Mr. J. D. Fulp
Naval Postgraduate School
Monterey, California

5. Professor Yeo Tat Soon

Director, Temasek Defence Systems Institute (TDSI)
National University of Singapore
Singapore

6. Ms Tan Lai Poh

Temasek Defence Systems Institute (TDSI)
National University of Singapore
Singapore

7. Sze Li Harry, Lim
Naval Postgraduate School
Monterey, California

8. Han Chong, Goh
Naval Postgraduate School
Monterey, California

